Magnesium hydroxide [Mg(OH)2] is a flame retardant that we are all familiar with. It is often added to polymer materials to improve the safety factor of polymer materials that have problems such as flammability and large smoke. When encountering a fire, magnesium hydroxide will decompose and release bound water after being heated to absorb a large amount of latent heat and reduce the surface temperature of the filled synthetic material in the flame; at the same time, it can also suppress smoke and greatly reduce the smoke density during combustion , to reduce the risk of suffocation of those trapped in the fire due to dense smoke.
With such an excellent flame retardant, it is good to do your job well. But sometimes it can perform exceptionally well—for example, researchers have recently discovered that under certain conditions, when magnesium hydroxide is mixed with other thermally conductive fillers into polymer materials, it can also play a role of “synergistic heat conduction” at the same time.
Why study the thermal conductivity of magnesium hydroxide?
At present, high thermal conductivity insulating materials are widely used in the fields of aerospace and electrical equipment. In terms of electrical equipment, with the rapid growth of power demand, the capacity of power transmission equipment such as transformers and insulated cables is increasing, and the heat generated is getting higher and higher. Therefore, improving the thermal conductivity of insulating materials in power cables has important practical significance for increasing the current carrying capacity of the cable core.
For cable materials, insulation is important, as is thermal conductivity.
At present...
Comments